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Chapter 3. Diagonalizing Over Infinity

In Chapter 1 we briefly mentioned Georg Cantor's proof of the un-countability of the real

set. This has a lot of bearing on the subject of continuity, which we have already

touched on. The nature of the real set and continuity are essential to the way

mathematics is done in a great deal of physics and has influenced an even greater portion

of mathematics. Therefore, we'll begin our discussion by taking a closer look at what

Cantor was exploring during the late 19th century.

Cantor began to study the nature of the infinite in mathematics. The physical world,

while rich in multiplicity, does not seem to include infinitudes of anything physical.

However, Mental Space appears to have no such problem, and some mathematicians have

employed mathematics as a tool for studying "precise" ideas about infinity. Even the

simple set of natural numbers (N) is infinite. It is open-ended and you can just keep on

counting "forever". We can say that the natural numbers form a well-ordered set that is

precisely defined at its beginning (the number 1), but undefined (or we may say only

vaguely defined) at its end. It has no well-defined end, because, for any natural number

n you can always generate another number n + 1. Actually, the beginning of the natural

number set is not so well defined either. Most people would start at 1, but some people

prefer to start at 0. So we have to specify N0 or N1. The problem with 0 is that it is a

"back formation". By this I mean that the numbers originated as a way of describing

"how many", and that meant you were indicating how many examples of a particular item.

When you speak of having "zero" items, you imply the prior condition of having had

some of those items or the future possibility of having some of those items, still based on

a prior condition of at least knowing of their existence somewhere. The notion of the

existence of an item precedes the notion of not having the item. Thus it is odd to begin

an enumeration system with a number that refers to not having any of something before

you get to having anything in the first place.

In modern physics scientists have come to accept that everything exists potentially in the

vacuum state. Nevertheless, we still have the problem of talking about a "lack" of

something when we do not know what it is we lack, especially if we know that, whatever

it is, it exists as a potentiality that we do not experience simply because our attention is

not focused in the proper direction or manner in order to perceive that something. Thus,

we find that there is an issue about using 0 as a general symbol for the lack of something

when the something perhaps exists but remains undefined and/or unknown. This means

that 0 remains an undefined variable unless it is defined by the prior knowledge of

something to which it refers that can only happen after we have knowledge of at least 1

of the somethings. We can say, "I see one cow." We can also say, "I see no cows."

However, it is nonsense to say, "I see no x's" without prior knowledge of some

expressions (such as the word "expressions") containing x's. We are not conveying any

information in such conditions, so 0 is not a proper beginning for the set of natural

numbers. In my opinion, if we have to have a number zero, it serves better as an integer

bridge to the negative integers. Zero and the negative integers all imply the prior

existence of the positive integers -- i.e., the natural numbers (N). The traditional set of

integers (Z) always contains zero, the natural counting numbers (N), and N's "additive
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inverses" which are known as the negative integers. The negative integers (as well as 0)

all imply the prior existence of the positive integers, which are the same as the natural

numbers. So the integers are an expansion of the natural numbers.

Because the set of natural numbers has no defined ending, it is said to be "infinite"

(in-finis = no end). Cantor wondered whether all infinite sets really were the same size.

Before that everyone pretty well assumed that infinity (the condition of being infinite or

undefined in some way) was the only infinity, and it did not come in different sizes. So

Cantor developed some techniques for studying infinity. His first tool was simply to

map sets one-to-one. He used as his "metric", the set of natural numbers (N). He

assumed that this would be the simplest form of infinity. Of course, this assumption is

not exactly correct, because we just found out that the set of natural numbers starting with

1 is well defined at its "beginning". Zero, thought of as "nothing" somehow existing

forever with no "before" or "after" existence of anything else, might be the simplest form

of infinity. But even that thought implies the notion of "something else" (and the notion

of definition) in order to conceive of it. So we will grant that Cantor was speaking here

of something that has a beginning and goes on without "end".

What happens if we just take half of the natural numbers, say the even numbers. Do we

get half an infinity? Cantor lined up the natural numbers with the even numbers and

found that they mapped one-to-one.

Interesting. Half an infinity equals a whole infinity. Infinite sets apparently do not

follow the ordinary rules of arithmetic.

What about the integers (Z)? All the positive numbers plus all the negative numbers

should equal two infinities, right? Wrong.

Cantor found that by folding the list in half he could map the positive and negative

integers to the natural numbers.

* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,......

* 1, -1, 2, -2, 3, -3, 4, -4, 5, -5,.....

So two times infinity also equals infinity.

Cantor went on to look at the rational numbers (Q). Here there seemed to be a problem.

The rationals must be more numerous than the natural numbers. They form a ratio of

one infinity to another, so we have two infinities of natural numbers interacting: (m / n)

so that there is an infinity of rationals between any two natural numbers. Cantor

organized the rationals into a neat array. If you count forever down the first row of the
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array, you'll never even finish the first row. How can the rationals be countable?

However, Cantor noticed that by counting diagonally over his array he could map the

rationals to the natural numbers. (Follow the arrows marked on the array below and

map them one to one to the natural numbers.)

Bingo!! He had counted the rational set Q, and it was the same size as N. He had also

found a creative way of counting that was orderly but did not follow an ordinal sequence

a < b. If you insist on counting Cantor's array of rationals horizontally or vertically,

then you CANNOT map the list to N. If you allow diagonal counting, then Q maps to N

with no problem. It depends on how you look at it.

What about the real numbers (R)? Cantor could organize set Q so that it could be

written in an orderly (though not "ordinal") fashion. But nobody has yet been able to

write down the entire set R in a "well-ordered" (a < b) much less in any fashion, even

though Zermelo apparently has shown that it is theoretically possible to do so. So the

best Cantor could do was assume that there was some way to compose them into a list.

Actually, the notion of listing R in order is quite strange, because most of its members are

non-algorithmically irrational (have no predictable pattern to their sequence of digits) and

therefore can not be symbolized by any precisely written out number, which is why we

use substitute symbols such as π or φ for important ones that are not simple algebraic

numbers like √2.

Once Cantor had a "complete list" (a feat which he accomplished by simply declaring

that he had one), he found that, by adapting his "diagonalizing" technique in another

creative way, he could generate a number that was NOT on his list!! This seemed to

contradict the assumption that he had already compiled a complete list. His conclusion

was that there is no way to get a complete list of R, and therefore R is a "bigger" infinity

than N and therefore also must be uncountable (a condition also called

"non-denumerable").

Let us take a look at Cantor's "proof". It's actually a kind of demonstration or

construction that leads to a contradiction if we accept his assumptions. This

mechanical demonstration aspect makes it particularly interesting from the standpoint of

physics. Here is a version of Cantor's demonstration based on Eves and Newsom, p.

255-256. For a more detailed discussion, see
http://www.jamesrmeyer.com/infinite/diagonal-proof.html.
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See also Meyer's kindle ebook, The Infinity Delusion. As the latter title indicates,

Meyer is one of a group of mathematicians who have problems with Cantor's "proof".

Our purpose in looking at this demonstration is to play with Cantor's ingenious

technology, not to invalidate the proof (although we will bring up some suspicious

aspects of the proof, and you can find plenty more of that in James Meyer's "Logic and

Language" website). We will use the binary number system for this version of the proof,

so each digit "aij" in the proof will represent only the digits 0 or 1 exclusively.

Theorem: The set of all real numbers in the interval (0<x<1) is non-denumerable.

1. Assume the set is denumerable.

2. List the numbers in the sequence {P1, P2, P3, ...}.

3. Each (Pi) can be represented uniquely as an infinite decimal.

4. Form the sequence of numbers into an array where j is the jth digit of the sequence of

aij digits for the number Pi:

P1 = 0.a11 a12 a13 . . .

P2 = 0.a21 a22 a23 . . .

P3 = 0.a31 a32 a33 . . .

.........

5. We can construct a number Px = 0.b1 b2 b3 . . . in which bk = 0 if akk = 1, and bk = 1 if

akk = 0, for k = 1, 2, 3, ..., n, ... (The number described by the sequence of digits akk we

will call the "diagonal" number, and the "constructed" number Px we will call the "flipped

diagonal" number. The digit akk is the digit where i = j.)

6. Such a number clearly lies between 0 and 1 and differs from (P1) in the first decimal

place, (P2) in the second place, (P3) in the third place, and so on, thus producing a new

number that is not on the list.

7. Thus the original assumption is untenable, and the set is non-denumerable. QED!?

Here is what such a list might look like. Notice that we have no way of predicting what

the sequence of 0’s and 1’s will be like once we arrive at the . . . series of dots. We only

know that the diagonal sequence of numbers in red will flip to their opposite values and

the resulting binary number in blue down below will be different from all numbers on the

original list. In the list S with a subscript number stands for an infinitely long string of

digits that in this presentation consists only of 0's and 1's. The subscript identifies

which item on the list the string belongs to.
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Cantor's big assumption is that he can somehow create a complete list, even though he

apparently can not figure out how to organize the set of real numbers in the precisely

noted manner he does with the natural numbers, integers, or even rational numbers so that

we can predict the exact value of each item on the list. Also he does not provide us with

an algorithm for generating his list the way he does for the integers and the rationals.

Nor does he offer any proof that the list is complete as he asserts. Thus his claim that

his newly generated number is not on the list is questionable, because we have no way to

really be sure his list is complete. Nevertheless we will begin by granting him that

unproven assertion on which his proof of un-countability (non-denumerability) by

"contradiction" rests and see what happens when we run some experiments on it to test

the strength of his assertion.

Cantor gives us a demonstration that looks very much like a complete list with nice

indexes that run in numerical order. Nevertheless it is probably a bogus list because

only the indexes are orderly, and the list's internal content is totally lacking in algorithm.

We have no way to inspect the list and know that it is complete other than accept Cantor's

assertion that it is so. This is very different from his prior demonstrations with the even

numbers, integers, and rationals. In fact, Cantor never actually shows us a single real

number on his list. This is how magicians mislead people when they do illusions. If

his list is really NOT complete, then the number that he generates by diagonalizing may

indeed be definitely NOT on his list, but can be just a number that he somehow missed in

his list because he did not have a systematic listing method in his description of the list,

and thus it is not a new decimal. Another possibility is that for some other unspoken

reason his diagonal flipped number somehow will always end up being already in his list,

despite it apparently being different from each number on the list at some particular digit.

If you make the list without an algorithm or some kind of organizing rule you can never

be sure it is complete since you have to keep track of an infinity of numbers! Cantor's

labels in no way organize or identify the contents of his list. They simply produce a

hypothetical array – contents unknown. Meyer would say that Cantor has constructed a

metalanguage with which to describe his list, and the metalanguage has no clearly

defined connection to the specific numbers on the list. A metalanguage is a language

used to describe another language. Natural numbers in the metalanguage that describes

the list may treat numbers in the lower level language that formulates the list of "real

numbers" simply as objects with no numerical value! Cantor asserts that his list is

complete, and he assumes that it is, and he uses indexes to convince you into believing

him!! I think this hidden assumption about completeness is such an important part of

his demonstration that he must clearly prove or precisely define in his metalanguage

(Pi) how his lower level language list comes to be a complete list of real numbers

before his non-denumerability proof may stand firm. Only then can we be sure that he

gets a contradiction by finding another number that is not in his "complete" list.

Cantor was attacked in his day by members of the intuitionist school of mathematics such

as Kronecker, Brouwer, and Poincaré (all of whom were mathematicians of the highest

caliber) because his list was not truly constructible (as I just pointed out above).
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Zermelo showed that the large transfinite numbers promoted by Cantor based on his

"proof" that R is "bigger" than N are not derivable in principle from the standard

Zermelo-Fraenkel (ZFC) axioms of mathematics. Many believe that Gödel showed that

the continuum of real numbers cannot be proved or disproved (although Meyer and

others also have doubts about the validity of Gödel's proof). You as the

observer-participant must decide for yourself what to believe. So we shall experiment.

One way to make sure Cantor's list is complete is to provide an algorithm for checking

the list's actual content, not merely its indexes – which are just a list of natural numbers.

Of course, a finite algorithm is equivalent to a counting method (step 1, step 2, step

3, . . . . ). So, by providing an algorithm, Cantor immediately would admit that the real

numbers are countable after all. All Cantor does instead is shuffle indexes like a shell

game. You don't know what is behind them. I call the indexed strings of digits dummy

numbers. They are meaningless objects referred to in Cantor's metalanguage.

So, can we organize our list systematically to make sure we have them all and then test

Cantor's "contradiction"? There are many ways to organize the list. Here is a very

simple one. We just make a mirror image of the sequential enumeration of the binary

natural numbers flipped to the right of the radix point (for partial values of unity

represented as the addition of infinite sequences of decreasing fractions) and padded out

to infinity with 0's from the point beyond which there are no more 1's. This mirror

image list is not sequentially ordered by the dyadic relations < or > but has its own

logical algorithmic sequence so that we can predict precisely from each entry what the

next entry on the list will be. So here is our list that includes all binary numbers x such

that 0<x<1.

0. [0.0000...]

1. 0.10000....

10. 0.010000...

11. 0.110000...

100. 0.0010000....

101. 0.10100000...

110. 0.011000000...

111. 0.1110000000...

1000. 0.00010000000...

1001. 0.100100000000...

1011. 0.1101000000000...

1100. 0.00110000000000...

1101. 0.101100000000000...

1110. 0.0111000000000000...

1111. 0.11110000000000000...

10000. 0.000010000000000000...

... ....

..... ....

....11111. [0.111111111....]
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This list includes every number from 0 to 1, right? The numbers in brackets represent 0

and 1, so they are not part of the list, but act sort of as bookends. Recall that 0.1111... =

1.00000.... and is therefore beyond the hypothetical "last number" on the list both in size

and according to our algorithm. It is what we call the "limit" of the orderly sequence,

and 1.000 is not to be included on the list by our current definition.

You may not agree. You may say that these numbers all have infinite 0 tails after them.

There must be binaries that have 1's scattered through them all the way to infinity. In

our list the 1's travel to the right slower than the 0's, but they both eventually get to

infinity and cover all possibilities of sequences of 0 and 1. Because 0.111111..... is not

allowed, we have a problem with the addition of an infinite sequence of smaller and

smaller unitary fractions (fractions with numerator 1; fractions with numerator 0

represent empty digits in the sequence with 0 as a placeholder):

* 1/10 + 1/100 + 1/1000 + 1/10000 + 1/100000 + 1/1000000 + 1/10000000 . . . . . . . .

It's like a tortoise and hare race where the 0 hare seems to give the 1 turtle a little head

start. The 0 hare races out way ahead infinitely fast, but the 1 turtle keeps plodding on

and eventually "catches up" to the 0 hare. At infinity it turns out to be a tie, but the very

"last" number on the infinite list is the tortoise number 0.111111…., so he wins by

"cheating" and jumps out beyond the race track leaving the 0 hare all by himself.

Another way of looking at it is to say that the non-local 0 hare is already at infinity

waiting forever, while the 1 turtle plods his way across the local numbers until he gets to

infinity too, although by definition there is no defined end of the sequence -- only a limit

that is beyond the list but that also defines the list. Before getting into the

"completeness" issue I want to play with the process of diagonalizing that unfolds with

the particular infinite list that we have created according to Cantor's rules so that we can

see a serious problem with our notation system for numbers when we start dealing with

the addition of infinite sequences of decreasing fractions. The sequence of sums

approaches a finite limit, but is not allowed to include the limit in its sequence of sums.

The list goes from 0.100... to as close to .111111111... as you please, but never quite gets

there until you (by a transcendental leap) reach the limit of the list (1.0) at infinity. But

that's OK, since it's an infinite list, presumably just like the natural numbers. For

purposes of organizational clarity I'll leave the two bookend limits 0 and 1 there in

brackets for reference.

So if we exclude both 0.11111... and 0.00000... from our list, leaving them there just as

references, like we did when we wrote our definition of the list (0<x<1), where all the x's

form the list, we get the following diagonal (with digits in red):

[0.0000...]

0.10000....

0.010000...

0.110000...

0.0010000....
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0.10100000...

0.011000000...

0.1110000000...

0.00010000000...

.....

[0.111111111.....]

Our flipped diagonalized number becomes 0.001111111111....

However, according to our rules that require disallowing infinite strings of 1's, this

decimal is thus equivalent to 0.010000...., which is obviously the second number on our

precisely defined list!! Fortunately it's not way down in the list, though it could be,

depending on how we organized things.

Our list seems to satisfy Cantor's criteria for such an infinite list. Whether it is a

complete list of all of R is another question. Every Pi in the set {0<Pi<1} consists of an

infinite string of aij digits to the right of the decimal that are either 0 or 1, and each Pi in

the list is unique. We included every possible number of the pattern {0<Pi<1} in our

infinite list in an orderly fashion. And we diagonalized by his rules. We constructed a

number:

* (Px) = 0.b1 b2 b3 . . . in which

* (bk) = 0 if akk = 1, and

* bk = 1 if akk = 0, for k = 1, 2, 3, ..., n, ...

Our number (Px) differs from (P1) in the first decimal place, from (P2) in the second place,

from (P3) in the third place, and so on down the infinite list. Yet when we diagonalized,

we didn't get a new number, we got one that is clearly already on the list. WHY????

There are two reasons.

First, there's the serious problem in our notational system that we mentioned earlier. In

binary numbers this shows up as the overlap between numbers with infinite 0 tails and

numbers with infinite 1 tails. We followed the standard rule to convert the

infinite-1-tailed numbers into infinite-0-tailed numbers, but that just gave us a duplicate

number (0.010000....) that was clearly already on the list.

Second, binary and base (n>1) numbers are more compact than unary (base n=1) "tally"

numbers, but tally numbers do not have values smaller than unity, so Cantor is unable to

make his list using unary numbers. In the way that we have organized the list, the 1's

move out to the right as we go through the list more slowly than the diagonal digits move

to the right as we go down the list. So, as we go to infinity, we diagonalize the whole

infinite list in which each number is unique, but we always have a 0 at the diagonalizing

digit after we have gone some finite distance down the list.

With natural numbers you can use mathematical induction to show that you have covered
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an entire infinite list. If (Pn) is some proposition defined for all natural numbers (n), and

if (P1) is true and [P(k+1)] is also true, then (Pn) is true for the whole list of natural numbers,

even though we have an infinite list. We can't use this procedure with Cantor's list as it

is constructed because the indexes he uses do not refer to actual digits, and the numbers

on his list are no more defined than the non-algorithmic irrational numbers that

supposedly form the bulk of the set of real numbers.

However, since we have constructed our special list via an algorithm that precisely mirror

images the binary natural numbers (adding infinite 0 tails on to all of them), we can use

"mirror reflection" mathematical induction to cover the whole list. Our list of binary

numbers between 0 and 1 is just a mirror map of the binary natural numbers that act as

their labels. Our list is made totally of infinite sequences of binary digits and is

infinitely long and systematically covers all possible combinations of 0 and 1 listed in a

string of digits. The fact that right off the bat just by following Cantor's rules we get

duplicates that are already ON the list is an interesting situation given Cantor's claims for

his proof. It means his method as presented does not actually guarantee to generate a

number that is not on the list in all infinite cases. What's more, since we have no way to

observe all the numbers on the list, we have no way to check sure for sure whether a

given diagonalized number is really on or not on a randomized list now that we have

found a suspicious list that violates Cantor's logical argument.

It turns out we can construct an infinite number of these problem lists for Cantor. For

example, take the list below, which is identical in content to the above list, but slightly

rearranged:

[0.0000...]

0.010000....

0.100000...

0.110000...

0.0010010....

0.10100100...

0.011010000...

0.1110000000...

0.00010000110...

.....

.....

[0.111111111.....]

In this case I designed my list to provide some different special information about the

contents of the list and its organization. Here we can have all sorts of binary sequences

listed helter skelter except for one condition; the digits for akk are always 0. The

diagonal becomes 0.000000000... and its flipped diagonal is then 0.111111.... Both of

these numbers are well known and are not on the list. They are 0 and 1. But they are

outside the range of our defined set and so they do not qualify as additional members

of the list that have not been accounted for. So this is a different kind of unexpected

outcome. Here's another interesting case:
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[0.0000...]

0.10101010....

0.1000000...

0.011000...

0.0010000....

0.10101000...

0.011000000...

0.1110001000...

0.00010000000...

.....

.....

[0.111111111.....]

In this next example I deliberately made the diagonal match the first number on the list,

which is 0.101010101010.... All numbers on the list after the first number can be helter

skelter except that the diagonal digit akk must match the value of digit a1j where j is the

column in which akk appears. This base 2 number corresponds to the base 10 value

0.6666666.... It also corresponds to the fraction 2/3 in base 10. When you flip the

binary diagonal you get the sequence 0.010101010101...., which corresponds to the

decimal 0.3333333...., which represents the fraction 1/3 in base 10. This is an

interesting case, because the flipped binary turns out to be a number so common that it

would certainly be on any "complete" list of binaries. We can call this number the

"limit" of the list, because the diagonal is unknown in entirety until we get "all the way"

through the infinite list even though we have programmed it so that we know the entire

sequence in advance because we designed an algorithm that generates enough order in

the list that we can predict our diagonals and flipped diagonals even though the rest of the

digits in the list are distributed randomly.

We can now add another interesting rule to make sure our initial list is complete. We

say that the list must contain every complement (or conjugate) pair of infinite binary

sequences. A complement binary sequence is one in which every 0 is replaced by a 1

and every 1 is replaced by a 0. In other words a complement binary sequence is the

flipped version of any given binary sequence and of course means that the flipped

diagonal must be included in a complete list by definition. In this way we include

every possible flipped diagonal into the list. We know that if we have two lists, one

being the "original" low level list or reals defined by Cantor in his metalanguage, and a

second list being the same low level list plus the flipped diagonal from the first list, we

can count the two lists as one list simply by placing them next to each other (List A being

the original list, and List B being the original list, with the flipped diagonal placed at the

head of List B and labeled item #0, and then matching their natural number metalanguage

labels one-to-one.

A: 1, 2, 3, 4, 5, 6, . . . .

B: 0, 1, 2, 3, 4, 5, . . . .
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We end up with our two popular versions of the natural numbers, N0 and N1. This

procedure holds for any arbitrary diagonal we may define and its complement flipped

diagonal. So we see here that by giving a precise definition of the completeness of our

list and by specifying an arbitrary value for the diagonal, we end up with two infinite lists

that are always equivalent according to Cantor's own system of one-to-one mapping that

he uses on the natural numbers. We just count the two lists side by side. We can

iterate the process as many times as we like adding an infinite number of new diagonals

and new flipped diagonals, but each new list maps one-to-one to our original list or to any

intermediate list.

Cantor's diagonal rule means that the flipped sequence always will be different from each

sequence on the list at its akk digit. This means that Cantor may not impose his diagonal

rule on a "complete" infinite list of binaries, because a complete set of binaries by

definition contains every complementary pair of binary digit sequences. Doing so by

definition violates our precise definition of a complete list of binary numbers which

Cantor failed to provide. If his list is complete, it must contain every binary sequence.

That must include every possible diagonal and its complement. However, by changing

every item on the list by a unique digit he appears to contradict the completeness of the

list by producing a new sequence that is not on the list. When he flips the diagonal into its

complement, by our logical definition he generates a sequence that must be on another

list that is of the same order of infinity and therefore no "bigger" than the list of

natural numbers. Cantor's problem is that he starts with an infinite list of natural

numbers, maps his real numbers to that list, and then generates a "new" real number that

is not on his first list of real numbers, but along the way he forgets that by the rule for

generating the natural numbers, given any n that is on the list, n + 1 is always still on the

same list. He is treating an infinite list as if it were a finite list. As the natural numbers

are defined (and as his list is defined by those natural number labels) adding another item

to the list does not make a "bigger" infinity, it just adds another specified number to the

infinite list which is how the natural numbers are defined. The list is just a list of

unspecified length that enumerates a bunch of objects of unspecified or only vaguely

specified semantic contents. You can see here how the metalanguage of his list treats

the numbers on his list simply as an endless bunch of objects that are by definition

governed by his metalanguage definition of the counting numbers and not by any

property of the real numbers. So Cantor's method of diagonalizing real numbers is just

a variation of the same way he diagonalized the rational numbers. He just adds another

step, a diagonal list of lists of real numbers, and the list of lists can be mapped back to the

natural number list labels.

When we look at what Cantor has really created, we see that he has contradicted his own

fundamental system of one-to-one mapping with which he began his research into infinity.

This unannounced shift of linguistic systems (rules of the game) for discussing ideas or

phenomena is a serious problem in modern mathematics and physics and leads to many

illogical conclusions that mislead even the experts. We now have shelf loads of books

and numerous faculty positions dedicated to the study of transfinite numbers, all based on

a simple linguistic misunderstanding mixed together with assumptions that contradict

earlier foundational assumptions. This problem relates back to the difficulties
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mathematicians have had in framing a precise definition of the calculus by means of

limits.

If we wish to evaluate Cantor's contribution to mathematics, we can say that he brought

to our attention a critical flaw in our notation system for representing values that are less

than unity. It turns out that no matter what base we use, many ordinary rational

numbers can only be approximated in the notation that uses radix points. Likewise,

many other numbers (a majority of the possible values less than unity) can only be

approximated in that same notation. There always has to be a resolution cutoff point

that means any value is only accurate to a certain agreed upon significant figure or

number of decimal places. This becomes extremely important when mathematics is

applied to real-world problems in physics, especially since there are fundamental

limitations on the measurement of any physical system.

Another way of looking at the "contradiction" brought out by Cantor's "proof" is to treat

the flipped diagonal as the "limit" of the list. If we return to our discussion of the way

mathematicians defined a limit in order to justify the calculus, we find that Cantor's

flipped diagonal "limit" corresponds to that method, since each infinite binary sequence

after the radix point corresponds to the sum of a sequence of increasingly smaller

fractions, and each succeeding digit of the diagonal to the list takes us to a smaller

component fraction of a particular sequence. Cauchy's limit of a function (see Chapter

01) is a curious entity, because it is part of the set of values for points along the segment

of a function but is a point specifically excluded from the series of points in the arbitrary

segment that consists of an infinite set of real number valued points (just like Cantor's

list). Recall that |x - a| must stay greater than 0, which means that x may not become

equal to a. So fa becomes the "limit" but is not allowed to be treated in the function

even though it is part of the set of points along the interval. In the same way the

sequence 0.0101010101 is a member of the set of binary sequences even though it is

excluded from the sequence that makes up the "list". We make a quantum leap to the

limit and find that the limit point along the segment of the function is part of the list of

points along the segment, and in fact is the one point we put attention on to find the

derivative. No one would say that the limit point is not a part of the function since it

must be a "continuous" function. On the other hand, the leap to the limit from the series

of sums that converges on the limit is not a smooth transition, but a sudden shift of

attention to a separate subset governed by a separate rule.

It is well known that the infinite number of points on a line of any length is the same as

the infinite number of points in a space of any size or dimension. The addition of one

point, or any finite number of points, or even an infinite number of points to an infinite

collection of points does not make the infinite collection infinitely larger -- as Cantor

himself showed by his one-to-one mapping. However, in his "diagonal proof of the

non-denumerability of the reals" he abandons his one-to-one correspondence while at the

same time failing to prove the completeness of his list. He leaves us only with a dummy

list labeled with natural numbers in a metalanguage, and we know that any such list with

another "new" natural number added is still of the same "infinite cardinality" as the

natural numbers, because for any n we can always have n + 1. He does not write out his
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list or any precise rule for such a list, because, if he did so, he would merely have another

list that maps to the natural numbers, which is not what he wants to show, because then

his vision of a vast hierarchy of transfinite sets fades into a fantasy.

Now let's start to think about this little mathematical game in terms of physics.

Cantor's dummy indexed decimals don't really let you check his list, because you do not

know the values of his (aij)s. They are just probabilities. Each digit can be a 0 or a 1

with 50% (or .5) probability. This is just like the quantum problem of the observer not

knowing whether the electron spin is up or down, a photon is polarized this way or that,

or the Schrödinger cat is dead or alive. You must look at the number or the particle to

see what the situation really is.

The quantum wave function is like Cantor's dummy indexed "number" system. A

particle is like an actual number. When you produce an actual list, such as we did in our

little experiment above, and look at actual numbers, then you know which way each digit

is, 0 or 1 in each position. In the case above, where we can check the list, we find that

the diagonalized number is indeed on the list or is the limit to the list (generated by the

diagonal flip the way we slide a value in a function in a certain definite converging

manner toward the limit of a defined range. This substantiates our claim that our list is

indeed complete whether or not it has anything to do with R. And it is not possible to

construct a new number that is not on the list (the same way that the limit of our

derivative is a number that is also in the set of points that are described by the range of

the function that we choose to study -- a precise one-to-one map of the points on a line to

the set of real numbers). The limit is in that set but is deliberately not included in the

sequence of values that we define in order to "trap" the limit of the sequence. When we

"collapse the wave function" by actually observing the flipped number from a real list, it

falls into place somewhere on the list just like an observed particle appears somewhere in

the range of its continuous real-value wave function (either within the list or as its unique

"limit" that is found in an equivalent "meta-list"). Cantor never actually produced a

single number on his list or a single actual diagonalized decimal or flipped diagonal like

we just did in our several examples. Before we look at a flipped diagonal, this dummy

diagonal made of a string of indexes hovers somewhere in a transcendental land of all

possibilities outside the dummy list that we haven't really examined with our attention.

This is what I mean by Observer Physics (and Observer Math.) Whether you actually

look or don't actually look at something makes a world of difference. Is Schroedinger's

cat alive or dead? Take a look.

If Cantor's diagonalization ever does produce one (and only one) extra number not on the

list I suggested, it forms the "limit" of the range of the list. Multiple repetitions of

diagonalizing give the same results. (Program: Put the new flipped diagonal number

at the beginning of a new list. Diagonalize. Flip. Put the new flipped diagonal

number at the beginning of a new list, diagonalize, flip, . . . .) Each new list adds one new

number, but has no effect on the cardinality of the list.

Cantor did not put his list in ascending or descending sequence by value, but we created
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some examples that partially or completely organize the list into a kind of wave function.

The sequence of items on his list of reals, if it is indeed complete as we showed it can be

by adding a simple rule to describe the list, and REGARDLESS OF THE INDIVIDUAL

NUMERICAL VALUES of the real numbers on the list (which do not matter here),

provides a ONE-TO-ONE MAPPING to the points in a line. Any two lines, regardless

of size or location, are equivalent topologically as sets of points. The numerical values

are irrelevant in Cantor's dummy system that is not ordered. In a sense they are ordered

by their natural number labels. It is just a set of points in an infinite digitized array.

The extra number that seems to pop out from diagonal flipping is just the end point of a

line segment or whatever point we designate as the limit of a converging process.

Forget its numerical value. (Forget the location of the particle in space/time.) It's like

flipping a coin. Careful study of this phenomenon reveals the secrets underlying the

theory of limits and the calculus as well as insights into how quantum mechanics works.

This little exploration we carried out has a great deal to do with the way we manage our

attention. Every time we shift our attention we generate a quantum leap in

consciousness from one viewpoint to another. Such leaps are quantum mechanical

processes that hold in mathematics and in physics. The problem is that in pure

mathematics we imagine that we can arbitrarily set the level of resolution and the

"significant figures" with which we represent a value, whereas in physics we must tailor

our mathematical models and our numerical representations to the scale of accuracy with

which we can measure the phenomena we are studying and modeling. Mathematical

space can be perfectly fractal, but physical space is only quasi-fractal and shifts the rules

of the game at different scales.

Going back to our earlier discussion of dots and gaps, Cantor's list of real numbers is like

a sequence of dots, each dot with a companion gap, the space between any two numbers

on the list. By virtue of being a list, by definition, the set is denumerable. It is

nonsense to talk of a non-denumerable list and uncountable numbers. Numbers are for

counting. To me an "uncountable" number suggests a variable, like (x). You cannot

count it in a sequence, because it represents a range of values. So you do not "count" x's

unless you start from a particular value for x and then assign a counting system. The

space assigned to a gap is variable. But not the gap itself. It belongs to the category of

non-count nouns, like air and water. The number of gaps in the list equals the number

of dots unless we add one more dot to represent the limit -- the end of the line. That's

what the flipped diagonal represents -- an extra dot that terminates the set.

This discussion also can lead us into the interesting territory of Zermelo's Well-ordering

Theorem and its equivalent, the Axiom of Choice. No one has been able to well-order

the above list of real numbers between 0 and 1 or similar sets -- i.e., produce an algorithm

to put them in (a < b) order. You will notice that my sample lists above contain certain

aspects of order, but are NOT well ordered. This is a nice exercise for someone. Using

binaries, well order the infinite list of numbers between 0 and 1. Zermelo apparently

proved it can be done!! (Hint: To do it we first have to resolve the notational problem of

repeating 1 tails that interferes with constructing a good algorithm.) However, Cantor

seems to process his entire infinitely long diagonal in one transfinite step to get his
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flipped diagonal, and that looks to me like he is exercising the Axiom of Choice -- a rule

that allows one to make an infinite number of choices all at once. In our experiment we

allowed that way of getting a diagonal and a flipped diagonal.

When I comment on Cantor's work, I in no way mean to detract from his genius as a

mathematician. His diagonal system is a profound and creative invention, a truly simple

and powerful technology. It is a very useful tool for deliberately shifting of viewpoints,

though not necessarily in the way he intended it. Unexpected twists of evolution often

happen during the process of discovery or invention. Cantor's work embodies the

fundamental principle elucidated by Maharishi in his Science of Creative Intelligence that

any truly powerful technology must be capable of transcending itself. The diagonal

technique itself is an excellent model of a system transcending itself that can be applied

in various ways. It is simple, elegant, natural, and robust -- all nice qualities for a

scientific model. However, we must be aware of what we are doing when we make

such transcendental leaps of attention and not take leave of our link with logic and reality.

As an analogy we can compare Cantor's diagonalizing process to the process of

meditation that was promoted by the Maharishi. Consider each number on the list to be

a thought in the mind of a person. Each succeeding thought is like the next number on

the list. As the person moves down the list doing his "diagonal" meditation, he is

moving in the direction of the infinite and the infinitesimal at the same time. At each

succeeding number his attention shifts to subtler and subtler akk's -- aspects of a given

type of thought -- represented in the number by the smaller and smaller, finer and finer

digits (fractions) of the number. When the meditator gets to the "end" of the list, his

attention transcends the list and finds itself OUTSIDE the list. When he flips, he is not

on any known list number. Any number far down on the list has to have as its diagonal

a fraction with an extremely large, but not infinite denominator. At the "end" when he

transcends the list, he is at "infinity". His attention becomes completely undefined (with

a value of 0), and suddenly a new flipped diagonal number appears. This number is not

on the list as he has known it. It may be a new creative thought that arises from the

source of thought, or "source of numbers", beyond the list. Or it may morph into an

ordinary number on the list, a regular everyday thought. This "new" but perhaps not

"new" number then incorporates itself into the list either as a number already known or as

a number not previously encountered in the list. However, this does not make the list

any bigger, because infinity plus 1 is still just infinity. However often we repeat this

process of meditating, transcending, and then coming out onto another thought, we have

not generated a higher cardinal infinity, just an greater awareness of diversity within

wholeness. By virtue of our prior definition of wholeness and completeness the "new"

number by definition integrates fully into the wholeness. Whatever the diagonal is, the

flipped diagonal is always its perfect complement.

Cantor devised a truly ingenious technology, don't you think? And it is intimately

related to the calculus and other mathematical tools that are essential to modern physics.

As my lists showed, Cantor's system really does produce numbers that are NOT on his

list. All the examples I gave did so. And, until we introduced our definition of
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completeness, we did not guarantee that any one of our lists was a complete set of R, only

that each was infinite. However, in each case with our lists the "new" number would

always transform itself magically into a number that was already in the list or to the limit

of the list which is also part of its inherent wholeness and not a greater infinity. This is

like the mind of the meditating person automatically integrating itself back into ordinary

life again after his transcendental experience during meditation, but with a greater sense

of wholeness.

Before we leave this chapter let us explore the "analogy" I mentioned between numbers

and quantum mechanics a bit more. Math provides wonderful models for looking at the

world. As we commonly see with computers, numbers can be interpreted in many ways.

One of the interpretations is graphical. Numbers can form bitmap graphics.

Infinite decimals are like infinite digital wave forms.

As we shift from the radix point to the right in any real number, we can imagine we are

moving in space/time by orders of magnitude farther and farther away from a starting

point. Things seem to get smaller as they get "farther away". Or we can imagine that

we are zooming in to finer and finer levels of magnification of an object. Objects seem

to get larger and larger as we zoom in. So if our attention is on objects, "zooming out"

makes objects look smaller and "zooming in" makes objects look bigger. However, if

our attention is on space, then zooming out makes the space we are aware of appear

bigger, and zooming in makes the space we are aware of appear smaller. This is true of

course only if we have some objects as reference that we assume are reasonably holding

"still". Cantor's list is a reference frame, and his indexes allow us to locate ourselves

anywhere in the space enclosed by this reference frame.

As you might guess, the subject of reference frames is quite important in Observer

Physics. OP is a more general viewpoint than conventional physics, but conventional

physics operates nicely as a subset of OP although some times the interpretation may be

somewhat different.

The same sort of thing happens with time frames. Size is an illusion that is relative to

the Observer and the reference frames he selects. Measurement is a mapping of two

arbitrary systems that may be in the same frame or different frames of observation. The

Observer does all the "zooming" with his attention. We do zooming in, zooming out,

shifting, panning, focusing, defocusing, dividing, integrating, fixating, de-fixating, plus a

few other tricks with our attention. Attention management is what physics and living is

all about. Magicians know how to manage your attention for you so that you start to

believe in miracles -- things happening that seem to transcend the laws of physics.

Underlying physics is the scientific study of consciousness, awareness, viewpoint,

attention, definition, belief structures, and the role of the Observer as witness and/or

participant. Palmer's ReSurfacing is a handbook of attention management that is well

worth exploring in this respect.

Exercise: Do #18 "Viewpoints" and then #19 "This and That" in ReSurfacing.
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As we saw with the rationals and also the real numbers, these sets are countable or

uncountable depending on how you look at them -- your choice of viewpoint --, and the

observer decides both the rules of the game and the outcome. We may accept some

given rules and then decide what is a possible outcome given those rules. Or we may

decide on the outcome and then fill in the rules of the game and the steps of actualization

along the way. Skill in the second approach leads to designer reality and the science of

the future.

We can use OBSERVER PHYSICS and OBSERVER MATH to clarify subtle and

profound issues in the foundations of science. The OBSERVER is critical to such

processes, even in pure math. Maybe love and other methods of expanding

consciousness provide ways by which people may find soul mates even when they seem

non-locally separated.


