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MOND and Observer Physics: Spiral Galaxies
Douglass A. White, Ph.D.

MOND is able to match the observed rotational curve data for many spiral galaxies quite
well, but lacks a coherent theory to explain why the formula works the way it does.
Observer Physics proposes an alternative that supports the MOND hypothesis by a
logical extension of Newton's formula that takes into account observer viewpoint. This
preliminary discussion only considers galaxies.  Examples comparing the formula's
predictions to the data include DDO 154, UGC 9242, NGC 1560, F563-1, NGC 2403,
UGC 128, and M33.

When astronomers total up the amount of matter they see in galaxies, galactic clusters
and other large formations, they find that there is not enough mass to account for the
observed dynamics according to the usual application of Newton's gravitational formula.
Even if we assume that there are dust particles and debris, and planets, and burned out
stars, and so forth that can not be seen, there still does not seem to be enough matter to fit
the dynamic behavior of these large-scale bodies.  Therefore many astrophysicists
believe that galaxies must have huge haloes of "dark matter" that our instruments can not
detect, but which influence the dynamics of these galaxies in the manner that we observe.
Some believe that exotic forms of matter such as WIMPs may be involved.

Israeli physicist, Mordehai Milgrom, has proposed (1983) Modified Newtonian
Dynamics (MOND) as an alternative way to resolve the problem of galactic dynamics
without resorting to a search for mysterious missing "dark" matter.  His formula fits the
data but does not say why.  This problem in the rotational dynamics of large-scale
physical systems remains one of the major difficulties in astrophysics and cosmology.

According to Newton's law as matter rotates in large celestial bodies at greater and
greater distances from the gravitational center of mass of the system, it would seem that
the gravitational force gets weaker, so the centripetal acceleration effect gets
correspondingly weaker.  Yet the far flung bodies in galaxies or other large systems
move as if there were a much stronger gravitational influence than appears warranted by
the observed mass in the central region that governs them.

Milgrom proposes a constant (ao) with the dimensions of acceleration that modifies the
dynamical equations of Newton and describes these motions when the Newtonian
acceleration falls below a certain threshold.  Milgrom modifies Newton's gravitational
equation by boosting the acceleration effects for distantly separated objects as follows.

* a = M G r^-2. (Newton)
* a^2 / ao = M G r^-2. (Milgrom)

These two can be written together:

* m (a / ao) a = M G r^-2 = aN.
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Here (aN) represents the Newtonian acceleration.  The expression [m (x)] satisfies [m
(x)] ~~ 1 when x >> 1, and satisfies [m (x)] ~~ x when x << 1.

When the acceleration falls below the threshold (a << ao), Milgrom uses his constant to
boost the gravitational effect.  When (a >> ao), then systems follow Newton's law.
One key result is that bodies far from the mass center of a galaxy attain an orbital speed
that is independent of the radius and proportional only to the fourth root of the total
baryonic mass of the galaxy (the Tully-Fisher relation).  Milgrom took the notion of
asymptotic flatness of galactic rotational curves as axiomatic when framing his theory.

Milgrom estimates the value of (ao) to be

* ao = 10^-10 m / s^2.

The MOND constant relation appears to fit the data in most cases, especially fitting the
well-studied disc galaxies.  The main exceptions seem to be the cores of rich x-ray
galactic clusters, where there is still a considerable discrepancy from his formula.  In
such cases Milgrom believes, and reasonably so, that there must be additional dark matter
to make up the difference.

Milgrom's procedure deals with low acceleration conditions.   It does not integrate with
relativity or quantum mechanics, breaks down entirely in the presence of black holes, and
has not been integrated with the cosmology of the entire universe and its evolution,
although there are some correlations emerging with the cosmic background radiation
data.

Milgrom admits that his hypothesis is weak in that it lacks a theoretical foundation and
does not work in the extreme ranges of physics.  He sees it as a patch to get the
observations to fit the equations.  He can not say for sure why there should be a constant,
or why it should have the value it has.  One suggestion is that the MOND approach
harkens back to Mach's principle, the idea that "local" inertial gravitational effects are
influenced by the global totality of mass in the universe.

The intergalactic distances are so great and the rate of falling off for the gravitational
force so great that Mach's principle seems improbable as a factor governing inertial
effects at the cosmic level (but not necessarily at the level of internal galactic dynamics.)

Milgrom suspects that, if his constant is correct, it more likely requires an adjustment to
inertia rather than to gravity.  In observer physics we find that these two can not be
separated, since they are conjugates of each other.  Adjustment of inertia -- such as
special relativity produced -- implies an adjustment to gravity.

Milgrom also speculates about possible influence from the vacuum state.  The vacuum
is Lorentz invariant with regard to constant speed, but may not be so with respect to
acceleration.  He even speculates on a possible macroscopic connection to the Casimir
effect and the vacuum zero point.
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Milgrom has a simple formula that fits the data, but no real coherent theory to back it up.

The key to galactic dynamics is the realization that the apparent value of the gravitational
"mass" changes for particles inside a cloud.  This principle would hold for galaxies as
well as nebulae, and possibly in a very attenuated manner even for the whole universe.
It would tend to show that the G-force between galactic participants would be strongest
out in the wings of galaxies rather than close to the center.

Milgrom's estimate of 10 ^-10 m / s^2 for (ao) looks mighty close to the numerical value
of (G) and leads right to the Tully-Fisher relation (which is where he got it).

* Kx = (G) (ao) = 1 m^4 s^-4 kg^-1. = V^4 / Mtot.
* a^2 / ao = M G r^-2.
* a^2 r^2 = M (G ao) = Kx M.
* a^2 r^2 = V^4 = Kx M.

The problem with Milgrom's approach is that both his formula and the value of (ao) look
arbitrary.  Why should this shift from (a) to (a^2) suddenly take place at his (ao)
threshhold?  What causes the Tully-Fisher relation?

Why should matter at one distance from a center of mass (CM) behave in a
fundamentally different way than matter at another distance?  If it turns out that the
"missing" dark matter doesn't really exist, what happens at Milgrom's (ao) acceleration
threshold?  Without some principle to explain why Newton's second law should
suddenly shift gears in a galaxy, the idea sounds arbitrary.  Adding such a rule when it
may not be necessary complicates Newton's simple dynamics and may even threaten to
modify our notions of geometry, given that general relativity is based on space/time
geometry.  We must justify such a complication.

Newton predicts for the big circular orbits of stars in galaxies that:

* A R^2 = G M.
* R V^2 = G M.

This means the acceleration drops off as the inverse square of the distance and the
velocity increases as the inverse square root of the radius.  To keep the velocity from
dropping way down as we get far from the center we have to amplify the velocity
somehow.  Physicists figure they need around ten times the visible mass of a galaxy to
hang around outside the galaxy as a "dark matter" halo in order to keep the galaxy
holding together as it turns.  That much normal matter should render the galaxy invisible.
Because of the strong belief in Newton's correctness -- even though Newton had no idea
of the existence of galaxies and other large cosmic formations when he made up his
handy gravity law -- physicists strain at inventing all kinds of exotic hypothetical
materials to account for the supposedly missing mass.  Our analysis suggests that the
problem is not that there is extra mass on the outside of a galaxy, but instead that there is
cancellation of "mass" on the inside.  Just like a static charge appears on a sphere's
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surface but there is no charge inside, so a galaxy that shows a strong gravitational
influence from its outside, has diminishing net values of gravity on the inside due to
relative equilibrium.

Galactic Rotation

The velocities of particles out in the "arms" of a large rotating system such as a galaxy or
galactic cluster tend to be nearly independent of the radius.  Velocities are also for the
most part independent of the number of particles or the density unless the density
becomes so low that the system no longer can function as a single entity or gets so high
that black holes form.  Below we compare a sketch of an average galactic rotation curve
to a Keplerian curve.

     (velocity)  (velocity)

  (radius)   (radius)
  Newton Curve (Keplerian Decline)       Average Galactic Rotation Curve

     (velocity)
   (velocity)

     (radius)       (radius)
    Solid Bodies        Velocity Independent of Radius

Only when the density is below the "cluster" density or when a particle is outside the
cluster in "open space" does the relation between that particle and the cluster take on the
normal Newtonian two-body behavior.  Milgrom's idea for a Modified Newtonian
Dynamics (MOND) is correct.  His only problem is that he needs a theoretical basis for
his finding.  Our analysis shows that a large cluster of particles with sufficient density
(such as a galaxy) behaves internally as if the mass increases in linear relation to the
radius.  What actually happens is that the mutual attractions of the various component
particles tend to cancel out in a state of gravitational equilibrium and this reduces the
effective gravitational mass near the center and appears to increase it toward the
periphery. A particle inside the cluster therefore tends to eventually behave as a member
of the cluster and synchronizes its movements with the group so as to produce a trailing
spiral in a coherently rotating galaxy.   These dynamics do NOT follow Newton's law
for freely falling bodies.  Particles in a cluster behave as if under the influence of "anti-
gravity".

The rotation curves for galaxies look very much like mirror images of the usual
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Newtonian rotation curve that shows the "Keplerian Decline".  Newton's relation is a
hyperbolic equation.  It describes the behavior of satellites that move in a highly diluted
space outside a large gravity well.  This is not the case for galaxies.  They contain
millions of solar systems all interacting like a huge gas cloud.  The "internal" dynamics
of galaxies are the mirror image of Newton's "external" dynamics.  We do not have to
find huge amounts of invisible dark matter, nor do we need to do any major surgery on
Newton's law.  We simply generalize it into an "internal" and "external" form.  The
difference is obtained by simply reversing the sign of any arbitrary component's "internal
velocity" and reversing the sign of the total galactic mass.  The sign on the total mass
reverses because the mass tends to pull "out" rather than "in" relative to component
particles inside the cluster.  The outward pull increases as an object nears the center of
the galaxy.  The sign on the "internal velocity" reverses because we set the outer edge of
the cluster as the "zero point" boundary line for velocity -- that is, the asymptote for
maximum "internal" velocity.  The "external" law describes two objects moving
externally relative to each other, so both velocities are positive.  The two objects have
equal relative speeds in opposite directions. The "internal" law deals with the case where
the "satellite" component is "inside" the whole cluster, so the cluster's relative velocity is
positive, but the internal component's relative velocity is negative.  (Which is positive
and which is negative is conventional so long as we are consistent in our relative
viewpoints.)

Thus the speed of an isolated satellite outside, but close to a cluster of particles will be
greatest near the cluster's edge and then will drop off quickly as radial distance increases.
It then fades off toward zero at greater radial distances. This is the Keplerian Decline.
On the other hand, a star near the central core of a galaxy of many gravitationally
interacting stars will have almost zero velocity.  The velocity will pick up rapidly as the
radial distance from the galaxy center grows, then it will level off as it nears an
asymptotic velocity.  Toward the outer regions of the galaxy the velocity will level off
and seem independent of the radius and more likely influenced by other factors in the
cluster's makeup.  This velocity is relative to an observer who is outside the galaxy.
Unlike a planet that is some distance from the star it orbits, a star in a galaxy is inside the
system.

Based on these observations we simply make a viewpoint shift and a tiny modification to
Newton's usual law to get the proper shape to the rotation curve.

*   Mcore G = Vsat Vcore R. (Newton's "External" Gravitation Law).
*  - Mtot G = -Vcomp Vtot R. (Newton's "Internal" Anti-Gravitation Law).

The first expression is Newton's traditional relation.  (Mcore) is the mass of the gravity
well that anchors a satellite system.  It may be a solar system or a planet with moons.
(Vcore) is the velocity of the gravity well relative to an observer on the satellite.  (Vsat)
is the velocity of the satellite relative to an observer on the gravity well.  In each case
the "orbiting" object is "outside" the object it orbits.  (R) represents the radial separation
of the two bodies.  Newton's relation expresses the Keplerian Decline that characterizes
such systems.  The second expression is our modified version of Newton's law for large-
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scale gravitationally structured clusters of objects.  (Mtot) is the total mass of a large
cluster formation such as a galaxy that has significant internal gravitational dynamics.
We give it a negative sign because we are treating objects inside the cluster rather than
outside as in the case of Newton's traditional relation.  (Vtot) is the velocity of the
cluster at the position of the component object (e.g. star) as seen by an observer outside
the cluster.  (Vcomp) is the velocity of a given component (star) inside the cluster as
seen by an observer outside the cluster.  In the satellite case the velocities are equal and
opposite in direction.  In the component case the velocities are equal and identical in
direction.  Thus, if we keep the two velocity signs the same for the satellite case, then
the two velocity signs must be opposite for the galaxy case.

The position of the observer relative to the system is vital to determining the orientation
of the rotation curve.  In the solar system situation observers see both objects as
"outside" each other.  However, in the galaxy system observers see the component as
"inside" the galaxy, and the galaxy contains the component.  Thus we conventionally set
both velocities positive in the first case (solar system).  But the component velocity is
negative in the second case (galaxy).  The mass is positive in the first case (solar system)
because the net attraction to particles outside the gravity well is always inward toward the
center of the gravity well.  The mass is negative in the second case (galaxy) because the
net attraction of the total mass of a galaxy is to draw central components outward away
from the center of the gravity well.

Let's summarize our logical argument. The density of material in a galaxy or other
cluster causes the interacting gravitational effects of the various component masses
to tend to cancel, depending on the radial distance from the center.  A component
in the cluster is surrounded by objects pulling it outward.  The result is an "anti-
gravity" effect inside large clusters of gravitationally interacting matter such as
galaxies and galactic clusters.  Newton's Law is hyperbolic, and the rotation curves
astronomers draw look hyperbolic and look very much like mirror images of the
Keplerian Declines we see in Newtonian satellite systems.  We get a mirror image
by simply reversing a sign.

Here is the rotation curve of a hypothetical galaxy calculated using our new formula.
Let's say we have a rotating spiral galaxy with a total visible mass of around 1.5x10^40
kg, or about 7.5x10^9 solar masses.  Let's say that the radius is about 6x10^20 m or
around 6.3x10^4 light years.  Let's calculate the "negative" velocity at various radial
distances from galactic center using our modified Newtonian formula and then convert
that data into positive "real-world" velocities by simply re-calibrating the data and
reading it backwards.

*  (-Mtot) (G) = (1.5x10^40 kg) (6.67x10^-11 m^3/s^2 kg) = - 10^30 m^3/s^2.

* - V^2 R = -10^30 m^3/s^2.   (We use this to calculate our outer rim velocity.)
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* R - V Observed Relative Velocity  (+V)

10^17 m -3.16x10^6 m/s 0 m/s (approximate)
10^18 m -10^6 m/s <10 km/2
10^19 m - 3.162x10^5 m/s 30 km/s
5x10^19 m - 1.4x10^5 m/s 36.2 km/s
1x10^20 m - 10^5 m/s 38 km/s
1.5x10^20 m - 8.16x10^4 m/s
2x10^20 m - 7x10^4 m/s 38.5 km/s  (nears asymptote)
2.5x10^20 m - 6.3x10^4 m/s
3x10^20 m - 5.8x10^4 m/s 39 km/s
4x10^20 m - 5x10^4 m/s 39.8 km/s
5x10^20 m - 4.5x10^4 m/s 39.9 km/s
6x10^20 m - 4x10^4 m/s 40 km/s

   Radius in Multiples of 10^17 m.
   1000 2000 3000 4000 5000 6000

- 040 km/s 40 km/s
- 100 km/s

30 km/s

20 km/s

10 km/s

-316 km/s 0 km/s

This simplified hypothetical data clearly shows the leveling off toward an asymptote as
the radius increases.  What happens as the radius decreases?  The "negative" velocity
value grows very quickly (i.e. drops off quickly toward a real world "zero" velocity.)
But it moves into relativistic "negative" velocities as it approaches -10^7 m/s or higher.
At smaller radial distances the relativistic shift goes up very rapidly.  It doesn't matter
whether the velocities are positive or negative when it comes to the relativistic effects.
Nor does the mass matter.  The only thing that matters here is the value of (-v).

* [M1 (1 - v^2 / c^2)^1/2= Mo.] (Einstein's relativistic shift of mass.)
  
This tells us roughly where the velocity cutoff is.  Below a certain radial distance from
the center the relativistic inertial resistance of a body to further negative acceleration will
rapidly increase until it reaches an equilibrium point and stabilizes.  This corresponds to
"zero" velocity inside the galactic bulge core area.  A black hole core would show
orbital velocity degenerating into rotational velocity.  Clearly the region R <= 10^16 m
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will correspond to approximately zero effective velocity for any component.  Depending
on actual observed maximum velocities we will know where along the relativistic curve
the cutoff point lies.  Velocity data from near the core of a galaxy tends to have a large
smear factor. Speeds are getting quite slow, and density is higher.  But we know for sure
it will never reach -3x10^8 m/s, and will fall somewhere between -10^6 m/s and -3x10^8
m/s.  This tells us the range of velocity for the system's internal dynamics.  Running
our velocities backwards from the cutoff at zero to the periphery velocity that is known,
we see a range.  Given the cutoff I chose for the example, it goes from almost 0 m/s in
the central region to around 40 km/s near the periphery.  With the level of resolution for
current equipment, anything from radial distance 10^19 m on out to 6x10^20 (and
beyond if the system is larger) will seem to go at about the same velocity subject to local
variations in structure.

With this simple theoretical framework we should now be able to work out the details of
large-scale dynamics, filling in the variations based on individual cases.  We thus settle
one of the major headaches in modern cosmology.  At least this aspect of the universe is
OK after all, and we can stop fretting about the huge mass of missing Dark Matter.

Now let's look at some examples of data taken from the observation of real galaxies.
Our first example is the thin galaxy, UGC 9242.

The above chart shows rotation curve data from galaxy UGC 9242 with an average
peripheral velocity in the neighborhood of 230 km/s.  The radius is measured on the
chart in arcsecs from 0 to 40.  Let's see how well this data relates to our Newtonian
formula.  We'll use for the galaxy rim the values R = 38 " and -Vv = -230 km/s.  This
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gives us approximately (-Vv) (+Vv) R = (- 2x10^6 m^2/s^2) (").  The Newtonian Mirror
Formula smooths out the curve ignoring local idiosyncrasies.  This gives the smoother
"negative" curve. Also, the negative curve (in hollow dots) is calibrated slightly higher so
the two curves don't overwrite each other.  We label the negative curve's velocities
"virtual" (Vv). We will call the real velocity that we observe (+Vr). The following is a
table of approximate values.  Black dots represent the observed data.  Hollow dots
show Newton's ideal curve.  (The chart and data were based on the Cornell University
"Astronomy 201: Our Home in the Universe" web site example of a rotation curve by
Martha Haynes and Stirling Churchman.)

* R +Vr -Vv (Velocity is in km/s.)
38 230 230
36 225 235.7
35 225 239
32 210 250
30 200 258
29 210 262.6
28 230 267.26
27 235 272.16
26 220 277.35
25 180 282.84
24 190 288.6
20 215 316.2
18 225 333.33
16 225 353.55
14 215 377.96
12 220 408.25
11 225 426.4
10 220 447.2
09 215 471
08 210 500
07 190 534
06 200 577
05.5 205 603
05 200 632.45
04 190 707
03.5 180 755.93
03 165 816.5
02.5 150 894.43
02 125 1000
01.5 050 1154.7
01 050 1414
00.5 015 2000
(00 000 3x10^8) (asymptotic values)
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The next example we'll look at is DDO 154, a test case with a very slow rotation.  I
estimated the data from a rotation curve plotted by Milgrom and Braun in "The Rotation
Curve of DDO 154: A Particularly Acute Test of the Modified Dynamics." (Astrophysics
Journal 334: 130-134, 1988 Nov. 1).  Milgrom draws the curve showing the data
compared with the curve his calculation generates and the curve predicted by Newton's
standard formula.  Let's see what our modified Newtonian Mirror Formula gives.  The
rotation curve, plotted in kiloparsecs vs km/s, shows a maximum peripheral velocity
stable at around 50 km/s.  Then it tapers off a bit at the very edge.  This is due to
material that is already drifting outside the "edge" and is starting to follow the Keplerian
Decline.  If we take 6.4 kpc as the edge, then we get G Mtot = 16000 kpc (km/s)^2.
We simply flip the sign of Mtot to find that Newton's Mirror law is a nice description of
the rotation curve.

R (kpc) V (km/s) - V (km/s)
0.00001 00 40000
0.001 ~0 4000
0.1 ~0 400
0.6 15 163.3
1.2 22 115.47
1.8 29 94.28
2.4 36 81.65
2.8 40 75.59
3.4 43 68.6
4.0 46 63.245
4.6 48 58.98
5.2 50 55.47
5.8 50 52.5
6.4 50 50 (Outer Edge of Galaxy)
--------------
6.9 49    +48.15 (Keplerian Decline begins.)
7.4 47    +46.5 (Velocity becomes positive.)
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Here is a Rotation Curve plotted for NGC 1560, a dwarf spiral.  The data is based on
A.H. Broeils, "The mass distribution of the dwarf spiral NGC 1560", Astron. Astrophys.,
256, 19-32 (1992).

When we re-calibrate the negative plot into positive velocities there is a distortion at the
low velocity range.  This is partly due to greater smear factor in the data itself that
occurs as measurements are taken closer to the core as you can see from the data below.

Here is a list of the data.  The radial distances are in kiloparsecs, and I used Broeils'
circular velocities corrected for asymmetric drift.  The negative velocities are calculated
from the product of the largest radius and the squared velocity at that radius (which is
also maximum): 51,367.368 (kpc) km^2 / s^2.

R (kpc) - V +V +/- Errors by least squares algorithm

0.22 485 05.0 7.5
0.4365 343 08.9 9.9
0.65475 280 14.5 6.3
0.873 242.57 26.4 5.6
1.09 216.96 28.9 5.7
1.3 198 27.8 2.3
1.53 183.365 31.8 3.2
1.746 171.522 42.8 2.1
1.96 161.7 48.2 1.6
2.18 153.4 48.4 1.3
2.4 146.3 50.6 1.0
2.619 140 53.5 1.0
2.837 134.55 57.2 1.3
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3.055 129.658 59.1 1.5
3.274 125.26 59.8 1.6
3.492 121.28 60.3 1.6
3.71 117.667 60.7 1.6
3.9285 114.35 62.1 1.9
4.14675 111.298 63.6 1.6
4.365 108.48 62.0 1.6
4.583 105.866 60.5 1.4
4.8 103.4 60.3 1.5
5.019 101.158 63.8 1.3
5.238 99 66.1 1.3
5.456 97 67.7 1.2
5.6745 95.14 70.4 1.1
5.89 93.365 73.0 1.2
6.111 91.68 74.2 1.2
6.329 90 75.1 1.3
6.5475 88.574 75.2 1.2
6.76575 87.1336 76.3 1.3
6.984 85.76 77.2 1.4
7.42 83.2 76.9 1.5
7.857 80.856 77.5 2.0
8.2935 78.7 78.7 2.3

Our next example is F563-1.  This data is from McGaugh and de Blok, "Testing the
Hypothesis of Modified Dynamics with LSB Galaxies and Other Evidence," (Astrophys.
J., 499: 66-81, 1998, May 20,) p. 73.
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R (kpc) +Vr (km/s) -Vv (km/s)

01 049 460.16
02 070 325.38
03 080 265.67
04 090 230
05.4 095 198
06.5 100 180.5
07.5 105 168
08.5 110 157.8
09.7 110 147.75
11 110 138.7
12 110 132.8
13 110 127.6
14 110 122
15 110 118.8
16.2 110 114.3
17.5 110 110

What I call Newton's Mirror Formula correctly gives the commonly observed rotation
curve for galaxies in close agreement with observations.  The procedure to flip the
Keplerian Decline into its mirror image is simple and straightforward.

Usually we have some data from observations that can be interpreted in terms of radial
distances and velocities.  So first we plot out the rotation curve from that data and then
calculate from the rim inwards to see how well Newton's Mirror Formula predicts that
data.  We calculate (Mtot G) by multiplying the rim velocity squared times the rim
radius.  Then we divide (Mtot G) by each radius value we wish to calculate the velocity
for and take the square root of that to get the negative velocity.  We plot downwards
from the rim velocity as we move in along the radius.  Then we adjust the scale
according to the cutoff velocity, comparing the curve to the velocity data points gathered
from red/blue shift measurements.  We map the two rim velocities and the two inner
velocities and calibrate the two scales between those two limits.

If this simple theoretical framework describes the general rotation curves of spiral
galaxies and other large-scale systems, we may be able to settle one of the major
headaches in modern cosmology and astrophysics with a generalized Newtonian formula.

R

+V (outside)

R

+V
(outside)

(inside)

(outside)
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Resources
There's an excellent list of articles by and about Milgrom and his MOND hypothesis
accessible on the net at Stacy McGaugh's "The MOND Pages".  I based my sketches of
general types of rotation curves on the nice ones done up by Martha Haynes and Stirling
Churchman for the Cornell University "Astronomy 201: Our Home in the Universe"
website.  That site also contains a lot of good photos and data summaries. That also was
my source for the UGC 9242 data.  The sources for the other examples are listed in the
article by each example.  This article November 5, 2003, marks the first publication of a
theoretical treatment of the MOND hypothesis.  My preliminary discussion of MOND
without a final theoretical resolution appeared in chapter 15 of Observer Physics (Taipei:
Delta Point, 2002, 2003).  The new edition has been updated to include the latest drafts
of these recent rapid research developments.  For more insights into gravitational theory,
see my monograph, "Gravity and Observer Physics: a New Interpretation."  (Taipei:
Delta Point, 2003.)  The book and monograph are available through the web site:
dpedtech.com, or via email: dpedtech@dpedtech.com.  To look at lots of rotation curves,
see "The data base of spiral galaxies by Courteau" (1996, 1997).  This data is available
on the Internet as "Rotation Curves and Surface Brightness Profiles of 304 Bright
Spirals" in An Atlas For Structural Studies of Spiral Galaxies, in the knowledgebase
Level 5 section of NED (NASA/IPAC Extragalactic Database.)
* Courteau, S. 1996, Ap JS, 103, 363 (photometrics).
* Courteau, S. 1997, A J, 114, 2402 (rotation curves).

25 Rotation Curves Showing Typical Variations in Size, Speed, and Curve Shape
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The above sample of rotation curves is based on A. Bosma, Ph.D. Thesis, University of
Groningen (1978).  It is available in the section on "Rotation, Kinematics, and
Dynamics" of "Internal Structure and Dynamics of Galaxies", Basic Data, Level 5 of the
NED Knowledgebase.

Additional Examples and Methods

Here's another way to plot a Flipped Newtonian Rotation Curve that may feel more
comfortable.  Let's say that the current resolution of your telescope and Doppler
equipment is around 1 kpc and 20 km/s.  Doing Doppler measurements of such small
velocities using hydrogen we must resolve wavelength differences of around .035
nanometer.  The margin of error can be quite large, and I would consider 20 km/s is a
pretty reasonable margin.  Distance measurements are also often being revised.  The
distance affects the size.

We plot a galactic rotation curve using Newton's Flipped Formula and our limits of
resolution.  Let's say that we look out at NGC 2403 and find that it runs at its asymptote
rim velocity at a radius of around 15 kpc.  So we set that as our closest instrument
reading to "zero" negative velocity -- that is, our error margin of 20 km/s -- translating
from our Doppler equipment.  This gives us -6000 (kpc) (km/2^2) as our "minimum"
negative constant for the rim asymptote.  We then use our Flipped Newton Formula to
plot off "negative" velocities at various kpc distances along the radius to see our
theoretical rotation curve.  (Divide by the desired radius and then take the square root.)
If our Doppler actually measures the positive asymptote rim velocity at 134 km/s, then
our last (innermost) plot will be at [(6000) / (154)^2 = .253 kpc.  (-154 - (-154) = 000.)
This is the smallest radial distance we can get meaningful data from.  Anything from
there on in can be going on average anywhere from zero to 20 km/s, but it all gets
mushed.  That's our cutoff radius and cutoff velocity.  (The negative velocities go
relativistic inside that radius.)  We call this cutoff (-Vlo) and use that as our asymptote
velocity and convert all our negative velocities to positive velocities simply by
subtracting the lowest readable negative velocity (-Vlo) calculated at our low limit radial
distance (.253 kpc) from each negative velocity (-V).  This gives us our theoretical
rotation curve for NGC 2403.

R V^2 = (15)(20)(-20) = -6000 (kpc)(km/s)^2.  [-V - (-Vlo)] (km/s)]
R (kpc) +V (data)   -V +V (Theoretical Curve Using Newton)
15 134 20 134 [-20 - (-154) = 134]
14 133 20.7 133.3 [-20.7 - (154) = 133.3]
12 133 22.4 131.6 [and so on]
10 131 24.5 129.5
08 131 27.4 126.6
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06 130 31.6 122.4
04 124 38.7 115.3
02 095 54.8 099.2
01 077 77.5 076.5
00.253    "000"    154
I estimated the data from McGaugh's plot in "Testing the Dark Matter Hypothesis...".
The theoretical curve fits the data curve pretty closely, always staying within 10 km/s.

Here is UGC 128.  We need to raise our velocity resolution range to around 27 km/s.
(For example, see the error margins in McGaugh's plot, also given in "Testing...".)

R V^2 = (45) (27)(-27) = -32805 (kpc)(km/s)^2.
R (kpc) +V (data) -V +V (Theoretical Curve Using Newton)
45 130 27 130 [-27 - (-157) = 130.]
39 129 29 128
28 128 34.2 122.8
20 125 40.5 116.5
15 118 46.8 110.2
12 107 52.3 104.7
09.5 090 58.8 098.2
06 079 73.9 083.1
04.5 065 85.4 071.6
03.5 052 96.8 060.2
02 030    128 029

I used as a source data by Chris Mihos (see his Applet program on RotCurves.  See also
the chart in McGaugh and de Blok.)  The minimum error range shown on the McGaugh
plot for data is at least -27 km/s.  Using this margin as our negative asymptote we get a
very close fit to the data that stays within 10 km/s throughout the curve.

Here's another example: M33 (NGC 598).  I estimated the data from Chris Mihos' site.
Setting -V at -25 km/s we get R V^2 = -5250 (kpc)(km/s)^2.

R -V +V +V (data)
8.4 25 108 108
7.2 27 106 106
5.4 31.2 101.8 100
3.6 38.2 094.8 093
2.6 44.9 088.1 085
2 51.2 081.8 078
1.6 57.3 075.7 072
1.2 66.1 066.9 055
1 72.5 060.5 047
.5    102.5 030.5 030
.
When we take a velocity resolution cutoff margin of around -25 km/s, we get a curve that
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fits the data very closely.  Only two points are more than 10 km/s off from my
estimations of the Mihos plot.  It would help if I had the exact numbers, but these curves
are amazingly close considering that the only thing I did was flip Newton over to allow
for the observer viewpoint difference and then allow for an instrument resolution cutoff.
Please take a good look at this material.  All the curves go in this direction.  Messing
around with huge invisible haloes is just a messy way of fixing things, since we don't see
any such substantial haloes.  MOND means we have to change Newton's law for some
unknown reason.  Why not simply take note of the fact that the observer's viewpoint is
different when he looks at a galaxy than when he looks at a solar system.  Also the
instruments have limitations.  This is the simple truth.  All the curves from galaxies
support this simple truth.  We do not need to reinvent the universe.

The relativistic argument I gave in the earlier notes still holds, but people may feel more
comfortable thinking of "measurement uncertainty" as the key factor in the cutoff,
because that is what the "relativistic" onset of "negative velocity" looks like to an
observer making the measurements.  It's just good old Heisenbergian quantum
uncertainty due to the subtlety of the measurements.  I see plots of the same galaxy that
differ by many kpc's regarding size, simply because it's hard to measure the distance
accurately.  This also throws the velocities off.

The one thing we all agree on is the general shape of the galactic rotation curve.  It is
clearly a mirror image of Newton's Keplerian Decline.  If the establishment wishes to
keep giving galaxies haloes or adding arbitrary factors to Newton's law, I suppose these
are imaginative ways of doing astronomy.  There are many ways to write equations that
"fit" the data.  I just think it's nice to know that the physics we already have and the data
that we already have are all quite adequate to do the job.  Once we agree that everything
is generally OK, we can then focus on the details of what happens in specific cases that
modify the general pattern.

Above: Plot from McGaugh and de Blok.
Right: Plot from Begeman, 1987.
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Based on data plot by Chris Mihos,
shown on his Case Western Reserve University web site.


